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SUMMARY

Two new volume-of-�uid (VOF) reconstruction algorithms, which are based on a least-square �t tech-
nique, are presented. Their performance is tested for several standard shapes and is compared to a few
other VOF=PLIC reconstruction techniques, showing in general a better convergence rate. The geometric
nature of Lagrangian and Eulerian split advection algorithms is investigated in detail and a new mixed
split Eulerian implicit–Lagrangian explicit (EI–LE) scheme is presented. This method conserves the
mass to machine error, performs better than split Eulerian and Lagrangian algorithms, and it is only
slightly worse than unsplit schemes. However, the combination of the interface reconstruction with the
least-square �t and its advection with the EI–LE scheme appears superior to other existing approaches.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The volume-of-�uid (VOF) method has become a popular and successful technique to track
interfaces in both two-phase and free-surface �ows. It is based on a characteristic function �,
with value 1 in one phase and 0 in the other phase or vacuum. Since the �uids are assumed
immiscible and incompressible, the characteristic function does not change its value following
an elementary �uid parcel, thus it is passively advected by the �ow and satis�es
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The colour function or volume fraction C is the discrete version of � and represents the
fraction of each cell of the mesh occupied by one of the two components, say �uid 1. Cells
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without interfaces will have a value of C either zero or one, while cells cut by the interface
will have an intermediate value of C between zero and one. At any time step in the simula-
tion, the interface is not known: its geometry has to be inferred from the knowledge of the
scalar function C. Once the interface has been reconstructed, its motion in the velocity �eld v
is described by an advection equation for C. We assume that Equation (1) is satis�ed by the
colour function as well, and to integrate it in time we need to calculate the �uxes of C across
the cells boundary. This delineates a two-step procedure which is mainly geometric in nature
[1]. The reconstruction is not a unique process, given a spatial distribution of C the interface
geometry depends on the assumed reconstruction algorithm. We consider a two-dimensional
space, then in VOF=SLIC (for simple line interface calculation) methods [2–4] the interface
in each cell is a segment parallel to one of the grid coordinate axis, while in VOF=PLIC (for
piecewise linear interface calculation) techniques [1, 5–7] the interface is a segment perpen-
dicular to the gradient of the scalar function C. The actual position of this inclined segment in
the cell is uniquely determined from volume conservation. However, the overall reconstruction
is not in general continuous across the boundary of adjacent cells. VOF=PLIC algorithms are
more complex than piecewise constant methods, but they are more accurate and in particular
do not produce isolated small �uid bodies (�otsam) which appear in VOF/SLIC techniques
even for simple �ows [3, 4, 7]. One of the methods we describe in this article reconstruct
the interface with a sequence of segments, here limited to two, in each cell. This amounts
to a sub-grid modelling of the interface in order to decrease the reconstruction error and to
approximate the interface as a continuous chain of segments. An alternative approach would
be to enhance adaptively the spatial discretization in the neighbourhood of the interface with
several mesh levels. This approach has been followed by several authors in Cartesian [8] and
unstructured meshes [9]. A combined approach will probably result in a more detailed and
correct resolution of the interface and of the physics even for demanding situations such as
the formation or break-up of �laments. The colour function C is not continuous across the
interface, so a geometric evaluation of the volume �uxes across the cell boundary based on
the reconstructed interface is more accurate than standard algebraic numerical schemes for
advection equations [4]. More particularly, the calculation of volume �uxes can be done inde-
pendently along each co-ordinate direction, with multidimensionality obtained via an operator
split technique [1, 4, 5, 7, 10, 11].
This approach requires a number of interface reconstructions per time step equal to the

dimensionality of the space. Alternatively, multidimensional schemes require only one recon-
struction per time step, but are more complex because boundary �uxes depend on �uxes
calculated along each co-ordinate direction. Examples of multidimensional algorithms can be
found in References [1, 7, 12, 13].
We begin in Section 2 with a quick review of a few VOF=PLIC reconstruction algorithms

and the description of two new methods based on a least-square �t technique. In Section
3 we compare the accuracy of these methods with the reconstruction of typical test shapes
such as straight lines, ellipses and squares. Then, in Section 4 we review the advection
equation for the function C and further investigate the geometrical aspects of two split algo-
rithms, respectively, a Lagrangian [5] and an Eulerian one [1]. We then present a new mixed
split method which conserves mass exactly. Finally, in Section 5 we compare the perfor-
mance of several reconstruction schemes combined with these advection algorithms for stan-
dard tests such as the Zalesak slotted disk rotation [14] and the Rider–Kothe reversed single
vortex [1].
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2. INTERFACE RECONSTRUCTION

We consider a two-dimensional (2D) rectangular computational domain with square cells. In
VOF=PLIC methods the interface is approximated in each cut cell by a portion of a straight
line de�ned by the equation

mxx +myy=� (2)

The determination of the constants (mx;my; �) of Equation (2) is basically a two-step
procedure:

(1) evaluation of the interface normal m=(mx;my);
(2) determination of the line constant �, so that the fraction of the cell area cut by this

line and occupied by the reference phase is equal to C.

When both mx, my are positive, the volume fraction C is a monotonically increasing, non-linear
function of � [15, 16]. The determination of �, given the cut volume and the normal direction
m in a computational cell, is then a problem with a unique solution coming from enforcement
of volume conservation. It has been solved by many authors, either with a numerical root-
�nding technique or directly with analytical formulas describing the relation �=�(C). On
the contrary, the determination of the normal vector m is not a unique process. Usually, in
VOF=PLIC reconstruction the normal vector is determined by the volume fraction gradient
m=∇C and extensive reviews of several methods have been given in References [1, 7]. For
completeness and clarity of the presentation, we �rst quickly describe three of these methods
and then discuss with more details our new approach based on a least-square �t technique.

2.1. Parker and Youngs’ method

This is our own implementation (CIAM) [5, 15] of what is usually known as the Parker and
Youngs’ method [6]. We consider the 3× 3 block of square cells shown in Figure 1, with
�x=�y=h. The normal m is �rst estimated at the four corners of the central cell (i; j) with
a �nite di�erence formula, for example the x-component mx at the top-right corner is given by

mx; i+1=2; j+1=2=
1
2h
(Ci+1; j+1 + Ci+1; j − Ci; j+1 − Ci; j) (3)

Similarly for the y-component my and in the other three corners. Then the required cell-centred
vector is obtained by averaging the four cell-corner values

mi; j= 1
4(mi+1=2; j+1=2 +mi+1=2; j−1=2 +mi−1=2; j+1=2 +mi−1=2; j−1=2)

2.2. Centred Columns scheme

We consider again the 3× 3 block of Figure 1 and sum the volume fractions along the vertical
direction. The value obtained in each column can be considered as the height y of the function
y=f(x), with yi=f(xi)=

∑1
k=−1 Ci; j+k , and the abscissa xi at the centre of the cell. If we

approximate the interface as a straight line y=mxc x + �, then the slope mxc of this line is
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Figure 1. The 3× 3 block of cells used in the calculation of the normal
vector m with a typical VOF=PLIC reconstruction.

given by

mxc=
1
2h
(yi+1 − yi−1)= 1

2h

1∑
k=−1

(Ci+1; j+k − Ci−1; j+k)

We can also sum the volume fractions along the horizontal direction, and consider an approx-
imating straight line of the type x=myc y + �, with

myc=
1
2h

1∑
k=−1

(Ci+k; j+1 − Ci+k; j−1)

As discussed in Reference [7], a proper way to choose between mxc and myc is to take the
smaller one in absolute value

m=min(abs(mxc); abs(myc))

2.3. ELVIRA

The name stands for e�cient least-squares volume-of-�uid interface reconstruction algorithm
and is due to Pilliod [17]. With respect to the previous case, now we consider also the
backward and forward schemes, respectively,

mxb =
1
h

1∑
k=−1

(Ci; j+k − Ci−1; j+k)

mxf =
1
h

1∑
k=−1

(Ci+1; j+k − Ci; j+k)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:251–274



VOLUME-OF-FLUID METHOD FOR INTERFACE RECONSTRUCTION 255

−1 0 1 2
−1

0

1

2

X−Axis

Y
−A

xi
s

Figure 2. A linear approximation to the interface in a 3× 3 block, with the end and mid-
dle points of each segments. Only those inside the ‘radius of in�uence’ will enter the
least-square �t. The segments at the cells boundary do not connect with each other, so

there are actually two very close points on the boundary lines.

and analogously for myb and myf . Then we have to consider six di�erent cases and for each
of them we determine a line constant � to have the correct cut volume in the central cell
(i; j). This straight line is then drawn across the 3× 3 block de�ning a di�erent cut volume
C̃ in each of the surrounding 8 cells. We then consider the discrete error E in L2 between
the true value C and the approximated value C̃ given by the expression

E(m̃)=

(
1∑

k; l=−1
(C̃i+k; j+l(m̃)− Ci+k; j+l)2

)1=2
(4)

where m̃ is one of the six previously de�ned angular coe�cients. The value of m̃ leading
to the smallest error E is the winner. This method reconstructs a linear interface correctly,
whatever value of the angular coe�cient.

2.4. Least-square �ts

The �rst step in the procedure is to gather a convenient set of points inside the 3× 3 block of
Figure 2. To accomplish this, we need to start from a linear reconstruction of the interface.
To this aim the centred columns scheme is our choice, because it is the computationally less
expensive of the previous three methods and it has an intermediate convergence rate between
CIAM and ELVIRA, as it will be shown in the results section. For each segment of the
reconstruction we consider both its end points and the middle one. The reason of this choice
is that a good reconstruction intersects once or more the real interface, because of the constant
volume constraint, so that there are points on both sides of the plane cut by the interface.
For a good and e�cient �t we need to consider points on both sides, and this is the simplest
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scheme we have devised to this aim. Given all points inside the 3× 3 block we need to select
a number of them to enter the least-squares procedure. A simple idea we have implemented
is that of a ‘radius of in�uence’. From the midpoint of the segment in the central cell we
determine the minimum distance to the boundary of the block. All points inside this circle
will enter the least-square �t, as shown in Figure 2. This simple idea makes it easy to extend
the procedure to rectangular grids with slowly varying grid size and to unstructured grids.
We also notice that when the number of cut cells is greater than a prescribed value (say 5)
the number of points increases, but usually this also means a highly convoluted interface (a
radius of curvature smaller than the grid size), or the possibility of more than one interface
in the block, like for example in the case of two colliding droplets. In this case, we reduce
arti�cially the radius of in�uence by multiplying it by a number smaller than one.

2.4.1. Linear least-square �t. We present here two di�erent �ts. In the �rst one the line in
the central cell is approximated as a portion of a straight line. To this aim we minimize the
functional H1

H1=
∑
i
(yi +mxi + �)2 (5)

more precisely we also check if the line should be written as y+mx+�=0 or as x+my+�=0.
In the previous expression each couple (xi; yi) represents the co-ordinates of the generic point
inside the circle. We solve the resulting 2× 2 linear system only for the angular coe�cient
m, so basically this procedure is another recipe to �nd the normal vector m. Then the line
constant � is determined in the way previously described.

2.4.2. Quadratic least-square �t. In the second approach, we approximate the interface as a
portion of a circle. It is simple to extend the procedure to a portion of a parabola. This can
be considered a higher-order correction, in the sense that the results depend heavily on the
linear approximation used to determine the points inside the circle of in�uence. So we use
this procedure on top of a second-order accurate algorithm, either ELVIRA or the linear least-
square �t. The points entering the �t are determined in the same way, but now we minimize
the functional H2

H2=
∑
i
(x2i + y

2
i + axi + byi + c)

2 (6)

and solve the resulting 3× 3 linear system for the coe�cients a, b, c. The constraint of a
given cut volume is not in general satis�ed, therefore there is the need to move the arc of
circle within the central cell with some ‘ad hoc’ rule. We have chosen another solution, which
makes the idea more prone to be implemented in the three-dimensional (3D) case. We �rst
calculate the intersections of the circle with the boundary of the central cell and then move the
central point of the segment connecting these two points in the perpendicular direction, to get
the exact volume. In this way, we approximate the curved line with two consecutive segments.
A schematic picture of this procedure is shown in Figure 3. Simple extensions to three or
more segments can be devised, but then the calculation of the �uxes across the boundary
becomes more involved and lengthy. If the procedure does not succeed, for example if there
are more than 2 intersections or if the central point moves outside the cell, we slowly move
the intersections towards those of the linear approximation until the solution is satisfactory.
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Figure 3. A schematic picture of the three-point reconstruction. The thick solid line is
the original line, the dashed line is the segment connecting the two intersections of the
reconstructed circle with the boundary of the cell, while the thin solid line is the �nal

reconstruction made up of two consecutive segments.

As a byproduct of this procedure, we have also a local approximation of the curvature � of
the line. We have performed some simple tests by checking the curvature of circles with a
radius whose length in terms of number of cells ranges from 8 to 20. The maximum error
in the curvature is oscillating between 1 and 3%, without showing a monotonic behaviour, in
line with the results of [18].

3. RECONSTRUCTION ACCURACY TESTS

We now assess the accuracy of the reconstruction schemes previously described with their
application to a few con�gurations: a straight line, an ellipse and a square. In all cases, we
consider the E1 norm error, between the real line lr(x; y) and the approximation l̃(x; y), de�ned
as

E1=
∫ ∫

| lr(x; y)− l̃(x; y) | dx dy (7)

The �rst check is the reconstruction of a straight line. In the central cell of the computational
domain we randomly position a point of the line and determine the angle with the horizontal
coordinate line. We average the results over 1000 di�erent cases in order to stabilize the error.
This is necessary because all methods, for some subset of the set of all possible lines, are
able to reconstruct a straight line exactly. The results are presented in Table I. The ELVIRA
scheme reconstructs exactly a straight line, whatever its orientation, while the other schemes
only in some case.
The somewhat non-constant behaviour of the order of convergence is due to the fact that

as we double the resolution portions of the line which were previously reconstructed exactly
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Table I. The E1 error in approximating a straight line.

CIAM Central ELVIRA Linear �t

Grid Error=order Error=order Error=order Error=order

102 8:21e− 4 3:29e− 5 ¡1:e− 17 1:78e− 6
0.97 0.45 **** 1.21

202 4:18e− 4 2:40e− 5 ¡1:e− 17 7:67e− 7
1.01 0.65 **** 0.81

402 2:07e− 4 1:52e− 5 ¡1:e− 17 4:36e− 7
1.00 0.81 **** 0.85

802 1:03e− 4 8:62e− 6 ¡1:e− 17 2:42e− 7
1.00 1.05 **** 1.08

1602 5:16e− 5 4:15e− 6 ¡1:e− 17 1:14e− 7
1.01 0.96 **** 0.96

3202 2:56e− 5 2:13e− 6 ¡1:e− 17 5:88e− 8

can now be not and viceversa, and this happen in a rather unpredictable way. However, the
results show that the error with the linear �t approximation is a few orders of magnitude less
than the error with the CIAM and Centred Columns (or Central) schemes. We can also iterate
the linear �t scheme by using the previous approximation, and this approach converges, when
the solution is not exact from the beginning, with a number of iterations between 2 and 4.
However, in the following of this section, we will show that for practical cases, there is no
need to iterate the linear least-square �t.
The second line is an ellipse described by the equation: x2=a2 + y2=b2=1, with a2=0:12

and b2=0:02, with a ratio of 14.697 between the maximum and minimum radius of curvature.
We have chosen an ellipse because its curvature is a smooth, continuously varying function.
However, we anticipate that the convergence results in the case of this ellipse and of a circle
with radius r=a are almost the same. The third line is a square with side c=0:512 and its
reconstruction mixes the ability of the methods to reproduce a straight line and a singularity
such as a corner. These two test shapes are shown in Figure 4 together with the coarsest mesh.
For both tests we have randomly positioned the centre of the test shapes in a cell near the
central point of the computational domain, as well as the angle between one axis of symmetry
of the �gure and the horizontal co-ordinate line. We average the results over several tens of
reconstructions to remove �uctuations due for example to particular alignments with the mesh.
The coarsest grid has 102 cells, as shown in Figure 4, the most re�ned one has 3202 cells
for the square and the straight lines, and 6402 for the ellipse, to analyse the convergence rate
at very high resolution in the case of a smooth curve. The error is calculated analytically, by
using the equation of the real line and of the approximating straight lines, and by considering
consecutive intervals in each cell de�ned by the end points and the intersections of the lines.
We have also carried out a numerical integration, and we usually need a few tens of equally
spaced points in each cell to reach a convergence up to the fourth digit, which is what we use
to calculate the converge rate of each method. In Table II, we present the results for the ellipse.
They are in agreement with those presented in References [1, 7]. It is apparent from the data
that CIAM is asymptotically a �rst-order method, but at low resolution, or equivalently when
the radius of curvature is not much bigger than the grid size, its performance is comparable,
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Figure 4. The ellipse and the square considered in our reconstruction tests
together with the coarsest mesh.

Table II. The E1 error in approximating an ellipse.

CIAM Central ELVIRA Linear �t Quadratic �t Continuity

Grid Error=order Error=order Error=order Error=order Error=order Error=order

102 3:90e− 3 4:25e− 3 4:76e− 3 3:30e− 3 2:32e− 3 1:79e− 3
2.34 2.47 2.42 2.41 2.88 2.87

202 7:68e− 4 7:65e− 4 8:87e− 4 6:23e− 4 3:16e− 4 2:45e− 4
1.84 2.27 2.33 2.15 2.63 2.58

402 2:14e− 4 1:59e− 4 1:77e− 4 1:41e− 4 5:10e− 5 4:09e− 5
1.38 2.02 2.10 2.07 2.34 2.17

802 8:23e− 5 3:93e− 5 4:12e− 5 3:41e− 5 1:00e− 5 9:06e− 6
1.16 1.89 2.04 2.02 2.14 2.03

1602 3:69e− 5 1:06e− 5 1:00e− 5 8:36e− 6 2:27e− 6 2:22e− 6
1.06 1.73 2.00 2.01 2.03 2.01

3202 1:77e− 5 3:20e− 6 2:49e− 6 2:07e− 6 5:54e− 7 5:50e− 7
1.03 1.57 1.99 1.97 2.00 1.99

6402 8:66e− 6 1:08e− 6 6:26e− 7 5:28e− 7 1:38e− 7 1:38e− 7

if not better, than the Central scheme and ELVIRA. This last one is truly second-order, while
the Central scheme exhibits an intermediate behaviour. Our linear least-square �t is almost
second-order even at very high resolutions where it remains still slightly better than ELVIRA,
moreover at low resolutions it outperforms all previous methods. The quadratic �t produces
a nearly third-order converge rate at very low resolutions, this is because a portion of a line
with high curvature is clearly better approximated by two consecutive segments than by a
straight line. It also exhibits the behaviour of a higher-order correction, in the sense that if
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Table III. The average discontinuity at the cell boundary for the ellipse.

CIAM Central ELVIRA Linear �t Quadratic �t Continuity

Grid �=order �=order �=order �=order �=order �=order

102 9:00e− 3 9:41e− 3 9:39e− 3 7:07e− 3 4:75e− 3 1:91e− 3
2.28 2.65 2.54 2.52 2.84 3.31

202 1:85e− 3 1:50e− 3 1:62e− 3 1:23e− 3 6:62e− 4 1:92e− 4
1.64 2.47 2.51 2.22 2.43 2.75

402 5:93e− 4 2:71e− 4 2:84e− 4 2:64e− 4 1:23e− 4 2:85e− 5
1.16 2.06 2.31 2.05 2.33 2.12

802 2:65e− 4 6:50e− 5 5:74e− 5 6:38e− 5 2:44e− 5 6:53e− 6
1.02 1.67 2.19 2.08 2.24 2.08

1602 1:31e− 4 2:04e− 5 1:26e− 5 1:51e− 5 5:15e− 6 1:54e− 6
1.00 1.31 2.08 2.00 2.04 1.91

3202 6:55e− 5 8:25e− 6 2:97e− 6 3:78e− 6 1:25e− 6 4:09e− 7
1.00 1.14 2.02 2.01 2.04 2.05

6402 3:27e− 5 3:73e− 3 7:30e− 7 9:38e− 7 3:03e− 7 9:89e− 8

we apply this scheme on top of the CIAM reconstruction the method is not able to bring
to second-order the convergence rate, so in this respect it relies heavily on the fact that the
initial linear approximation is a good one. The reconstruction is in general not continuous at
the cell boundary since the only constraint between the original line and the approximation is
volume conservation in each cut cell. The interface is then approximated in two dimensions
by a sequence of segments with discontinuities at the cell boundary that approach zero as
the resolution is increased, in particular we already pointed out that ELVIRA reconstructs a
straight line exactly. The three-points reconstruction gives us an extra degree of freedom that
can be exploited to decrease the discontinuity level at the cell boundary. We have implemented
a simple scheme that brings the points on the boundary towards each other. The procedure is
not always successful, this may happen when in the process the sign of the local curvature of
the line is changed, fact that we do not allow, or when the initial three-points reconstruction
was actually a straight line. The error after this procedure is given in the last column of
Table II. We see that the overall reconstruction bene�ts from this scheme at low resolution
or equivalently when the radius of curvature is comparable with the grid size. At very high
resolution there is no improvement in the results. Moreover, it is of some interest to check
how the discontinuity � at the cell boundary tends to zero on average as the resolution is
increased. From Table III, it is clear that the order of convergence of the method in the case
of a smooth line is more or less that of the discontinuity. In Table IV we present the results
for the square. Since most methods reconstruct a straight line correctly for some particular
inclination of the line with respect to the mesh, we need more cases to extract the correct
convergence rate. The error near the singularity plays a major role both at low and high grid
resolution. In the �rst case, its contribution to the total error is signi�cant for all schemes,
so that the di�erence among them is somewhat smeared out. However, for the second-order
schemes, the error is basically coming from the region near the singularity which scales as
�x2, so that they are still second-order. The di�erences among them are mainly due to the
di�erent accuracy in the corner reconstruction. With CIAM, which is asymptotically a �rst-
order scheme, as the resolution is increased the contribution from the error away from the
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Table IV. The E1 error in approximating a square.

CIAM Central ELVIRA Linear �t Quadratic �t Continuity

Grid Error=order Error=order Error=order Error=order Error=order Error=order

102 8:97e− 3 9:40e− 3 9:14e− 3 7:77e− 3 7:13e− 3 5:61e− 3
1.89 1.99 1.98 2.01 2.01 2.00

202 2:42e− 3 2:36e− 3 2:32e− 3 1:93e− 3 1:77e− 3 1:40e− 3
1.83 2.01 2.03 2.00 2.00 2.02

402 6:80e− 4 5:84e− 4 5:67e− 4 4:81e− 4 4:42e− 4 3:45e− 4
1.65 1.94 2.00 1.95 1.95 1.96

802 2:16e− 4 1:52e− 4 1:42e− 4 1:24e− 4 1:14e− 4 8:86e− 5
1.54 2.00 2.02 2.04 2.02 2.01

1602 7:40e− 5 3:78e− 5 3:51e− 5 3:02e− 5 2:81e− 5 2:20e− 5
1.35 1.92 1.99 2.00 2.02 2.00

3202 2:91e− 5 1:00e− 5 8:83e− 6 7:69e− 6 6:92e− 6 5:50e− 6

singularity becomes more and more important, and the method converges towards �rst-order,
but at a slower rate, compared to the ellipse case, because of the important contribution to
the error coming from the singularity. We conclude this section with a few words on the
3D extension of these techniques and on timing. We have implemented a 3D version of the
linear least-square �t. Preliminary results [19] are similar to the 2D case. A second-order
convergence rate is maintained for sphere and trigonometric surfaces up to at least a 1603

grid, while the geometric error for planes reconstruction is still a few orders of magnitude
better with the linear �t than with the 3D version of CIAM and of the Central scheme. In
terms of CPU time, CIAM and the Central scheme are comparable, ELVIRA and the linear
�t are slightly more time consuming, the quadratic �t and the one with added continuity, are,
respectively, 1.5 and 2 times more expensive.

4. INTERFACE ADVECTION

Once the interface has been reconstructed, its motion by the underlying velocity �eld must be
modelled by a suitable advection algorithm. Since each �uid component of the �ow conserves
its identity, the volume fraction function C is passively advected by the �ow and we assume
it satis�es a standard advection equation

dC
dt
=
@C
@t
+ v · ∇C=0 (8)

Moreover, if the �ow is incompressible, ∇ · v=@u=@x + @v=@y=0, the previous equation can
be recast in a conservative form

@C
@t
+∇ · (vC)=0 (9)

Equation (9) states the fact that the conservation of mass for an incompressible �ow is
equivalent to the conservation of the volume of each single phase. VOF advection techniques
are mainly divided in two categories: multidimensional or unsplit schemes and one-dimensional
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Ui-1/2,j

VLi,j VCi,j VR i,j

Ui+1/2,j

(a) (b)

Figure 5. Lagrangian advection of the interface along the x-direction: (a) interface reconstruction in the
central cell before advection; (b) contributions along the x-direction of the central cell after advection.

or operator split schemes. In this paper, we limit our presentation to operator split schemes,
where boundary �uxes at every time step are calculated independently and consecutively along
each co-ordinate direction so that the area �uxing each cell boundary is a simple rectangle,
if all points on a side of the square cell move with the same velocity. If this is not the case,
the area �uxing through the cell edge is a more complex geometrical �gure, for example a
trapezoid if a linear velocity pro�le is assumed. We �rst review a Lagrangian and an Eulerian
scheme and then describe a new mixed Lagrangian–Eulerian method.

4.1. Lagrangian scheme

This method was originally developed by Li [5] and its 3D version was discussed in detail in
Reference [15]. The interface advection is performed separately along each spatial direction via
operator splitting. The basic features of the algorithm are depicted in Figure 5: the horizontal
velocity is assumed constant on the two vertical sides of the central cell that are advanced with
a simple forward scheme. After advection, if the one-dimensional (1D) expansion term @u=@x
is di�erent from zero, the interface segment has changed not only its position, but also its
length and orientation, in particular there are two new constants (mx; �) in Equation (2) for a
motion along the x-direction, while my remains unchanged [15]. However, it is straightforward
[16] to calculate the �uxes to the left and to the right, VL and VR, respectively, and what it
is left inside, VC. The updated value of C is then given by

Ci; j=VLi+1; j + VCi; j + VRi−1; j (10)

With this formulation, we calculate the �uxes across the vertical boundaries of the cell and at
the same time we take into account the contribution of the 1D expansion term @u=@x, which
in general is not zero, even if ∇ · v=0. The interface is then advected in the y-direction in
a similar way. The starting sweep direction is alternated every time step.

4.2. Eulerian scheme

We consider the Eulerian scheme introduced by Rider and Kothe [1] where a ‘divergence
correction’ term C∇ · v is added to both sides of Equation (8) to give

@C
@t
+∇ · (vC)=C∇ · v (11)
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(a) (b) (c)

Figure 6. Eulerian advection of the interface along the x-direction: (a) SLIC reconstruction of the
interface; (b) explicit scheme; (c) implicit scheme.

If we denote with F the net horizontal �ux through a vertical side of the cell and with G the
net vertical �ux through a horizontal side, the integration from time n to time n + 1 of the
previous equation with an operator split scheme is a two-steps procedure given by

C∗
i; j=C

n
i; j + (F

n
i−1=2; j − Fni+1=2; j) + Cni; j(ui+1=2; j − ui−1=2; j) (12)

for the advection in the x-direction, and

Cn+1i; j =C
∗
i; j + (G

∗
i; j−1=2 −G∗

i; j+1=2) + C
n+1
i; j (vi; j+1=2 − vi; j−1=2) (13)

for the advection in the y-direction. In these two expressions, the superscript ∗ represents
an intermediate value for volume fractions and �uxes and the velocity v=(u; v) is actually
the CFL number, i.e. u=u�t=h and similarly for v. The generalization to rectangular cells
is straightforward. As discussed by the authors [1], key points of this scheme are: (a) the
divergence correction term, which appears in the RHS of (12) and (13), contains the volume
fraction C at di�erent time levels, in particular the term is explicit (time level n) in the �rst
equation and implicit (time level n+1) in the second sweep. As a result, the net divergence
correction employs a volume fraction at an intermediate time level; (b) the starting sweep
direction is alternated every time step; (c) in 2D cartesian geometry for an incompressible
�ow, the direct use of the identity @u=@x=−@v=@y may improve the discrete mass conservation
properties of the operator-split time integration scheme.
The basic features of the explicit and implicit schemes are depicted in Figure 6 [20]. For

simplicity and clarity, the initial reconstruction has been done with a VOF=SLIC method, with
the interface in each cell approximated by a segment aligned with one of the two co-ordinate
axis, as shown in Figure 6(a). With the previous normalization of the velocity �eld, every
grid cell has been mapped to the square with side equal to one, while the horizontal velocity u
represents also the rectangular area crossing the vertical edges of the central cell. For example
in Figure 6(a), ui−1=2; j is the rectangular area comprised within the left boundary of the central
cell and the vertical dashed line on the left, while Fni−1=2; j is the portion of this area occupied
by �uid 1. We can now rewrite (12) in the following way

C∗
i; j=C

n
i; j(1 + ui+1=2; j − ui−1=2; j) + (Fni−1=2; j − Fni+1=2; j) (14)

It is then evident that C∗
i; j, as shown in Figure 6(b), represents the volume fraction of the

central cell and it is the sum of three contributions: the term Cni; j(1+ ui+1=2; j − ui−1=2; j) which
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represents the area of �uid 1 left inside from the initial con�guration after the e�ects of
the compression term @u=@x have been accounted for (in other terms this contribution repre-
sents the actual area occupied by �uid 1 of cell (i; j) after an homogeneous compression or
expansion along the x-direction), the �ux Fni−1=2; j coming from the left cell and Fni+1=2; j from
the right one. On the other hand, the implicit scheme of (13) can be reformulated for the
advection in the x-direction as

C∗
i; j=

Cni; j + F
n
i−1=2; j − Fni+1=2; j

1− ui+1=2; j + ui−1=2; j (15)

In this case, the �nal volume fraction C∗
i; j is given by the sum of the initial area occupied by

�uid 1 in the reference cell and the two �ux contributions from the lateral cells, divided by
the total area 1− ui+1=2; j + ui−1=2; j of the composite rectangle, as shown in Figure 6(c).

4.3. Mixed scheme

First we notice that if we apply the Lagrangian scheme, as depicted in Figure 5, to the SLIC
reconstruction shown in Figure 6(a), then it is evident that the Lagrangian scheme and the
Eulerian explicit one are identical. However, this is just the result of the particular reconstruc-
tion of the interface with segments either vertical or horizontal. If a PLIC reconstruction is
considered, then the interface segments are in general not parallel to a cartesian axis. After
advection, the three rectangles involved in the calculation of the updated value of the vol-
ume fraction are always those of Figure 6(b): they �ll in exactly the central cell. Moreover,
the central contribution is the same, because both the Lagrangian and the Eulerian explicit
schemes take into account the compression/expansion of the central cell (this is the �rst term
on the r.h.s. of (14)). However, they di�er in the way the �uxes across the cell boundary are
calculated. In the Eulerian explicit scheme the �uxes are calculated before advection, while
in the Lagrangian scheme the interface is �rst advected and then the �uxes are determined.
As a result, in the latter the 1D compression=expansion of the two lateral cells is more cor-
rectly taken into account. The rectangular areas involved in the procedure are the same, thus
preserving the volume as a whole, but the two �uxes of �uid 1 are di�erent, because after a
Lagrangian propagation the orientation of the segment in general changes. Therefore, the �nal
value of C∗

i; j will not be the same for the two schemes. In the next section, we will show
that the Lagrangian advection of the interface in one direction combined with an Eulerian
implicit step in the other one is optimal in terms of performance. Note that we have given
a geometrical interpretation of the two schemes, but we also need to decide in which order
to perform them. The two indices usually considered to estimate quantitatively the validity of
a method are the conservation of mass and the error in some norm between an initial and a
�nal con�guration. We now show why one sequence is better than the other one in terms of
mass conservation, while it will be shown in the next section that they are similar from the
point of view of the �nal geometric error. Let us consider the 3× 3 block of cells of Figure 7
with the following volume fraction distribution [21]:

Cni; j =

{
1 for i=j=1

0 elsewhere

We simplify the problem by considering a SLIC reconstruction and by performing �rst the
compression along the x-direction. For the central cell, the kinematic condition ∇ · v=0
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Figure 7. A 3× 3 block of empty cells, but the central one which has unitary volume fraction.

implies that �u1 ;1=u2 − u1=−�v1;1=v1 − v2, where we have set h=1 for simplicity. We
consider �rst the combination Eulerian Implicit–Lagrangian Explicit (EI–LE), and after the 1D
x-compression we have

C∗
1;1=

1
1− u2 + u1 =

1
1−�u1;1¡1

all other C∗
i; j being zero. We consider a SLIC reconstruction with a vertical interface, then

the Lagrangian step in the y-direction gives

Cn+11;1 =C
∗
1;1; Cn+11;0 =−C∗

1;1v1; Cn+11;2 =C
∗
1;1v2

all other Cn+1i; j are zero. Since h=1, volume fractions and actual volumes coincide, then by
summing over all C’s we get

∑
i; j
Cn+1i; j =C

n+1
1;1 + C

n+1
1;0 + C

n+1
1;2 =C

∗
1;1(1− v1 + v2)=

1 +�v1;1
1−�u1;1 =1

since �u1;1=−�v1;1. Next we consider the combination LE–EI. After the 1D compression in
the x-direction

C∗
1;1=1 + u2 − u1=1 +�u1;1¡1

all other C∗
i; j are zero. After the expansion along the y-direction the terms di�erent from

zero are

Cn+11;1 =
C∗
1;1 + C

∗
1;1v1 − C∗

1;1v2
1− v2 + v1 =C∗

1;1; Cn+11;0 =
−C∗

1;1v1
1−�v1;0 ; Cn+11;2 =

C∗
1;1v2

1−�v1;2
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Clearly if �v1;2=�v1;0=�v1;1, we have ∑
i; j
Cn+1i; j =1

but in general this is not the case. We conclude that the EI–LE combination is better in terms
of mass conservation and this fact will be further supported by the results in the next section.

5. ADVECTION ACCURACY TESTS

Typical advection tests involve simple translations and solid body rotations of geometrical
�gures such as squares and circles. They are useful for debugging the reconstruction and
advection algorithms, as they test the capability of these methods to move around in the
computational domain portions of straight lines, circles, corners, with the constraint given by
the applied �ow that these lines have to preserve their form. The results of di�erent recon-
struction algorithms (SLIC, PLIC and others) and advection schemes (either operator split
or multidimensional) have been studied in great detail by several authors in the last years
[1, 3, 4, 7, 12, 22]. A good algorithm should translate and rotate �uid bodies, with an interface
delimited by a continuous line with continuous derivatives, without appreciable distortion or
deterioration of the interface (as opposite to the fragmentation of a smooth front determined
by a �rst-order accurate scheme, such as SLIC [3, 4, 7]), while conserving mass within ma-
chine error. Moreover, these solid body motions can test the capability of the reconstruction
algorithm to approximate regions with corners or with very high curvature relative to the grid
resolution. In a dynamical simulation, this situation may happen when an interface is stretched
by the �ow and ultimately breaks up. Capillarity e�ects due to surface tension quickly remove
regions with in�nite curvature such as corners, but they can still be present for some short
time, right before and after a reconnection which changes the topology of the interface. For
this reason, in the next section we present results for the Zalesak slotted disk rotation [14].
More demanding tests involve �ows with a non-uniform vorticity �eld. Each �uid component
deforms and shears as it moves through the computational domain with eventual reconnection
or break-up of the interface. The single vortex test [1] is here performed to compare the per-
formance of several reconstruction and advection algorithms. In particular, for both the solid
body rotation and the single vortex test we consider only the reconstruction methods, among
those described in Section 2, which show a second-order convergence rate together with all
three advection schemes, i.e. the Lagrangian, the Eulerian and the mixed one.

5.1. Zalesak slotted disk rotation

This study has become a benchmark for testing the accuracy of various interface tracking
methods. In the unit square with 100 grid steps along each co-ordinate direction, a circle with
radius equal to 15 cells is centred in (0.5, 0.75). A vertical rectangular cut is produced with
width equal to 1

3 of the radius and the upper bridge, connecting the left and right portions
of the circle, has the same maximum width. The velocity �eld v=(u; v) can be expressed in
terms of the stream function

�(x; y)=−�
2
((y − y0)2 + (x − x0)2) (16)
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Figure 8. Zalesak’s test for one full solid body rotation: on the left with the ELVIRA reconstruction
(solid line) and the linear best �t (dashed line), on the right with the quadratic �t alone (solid line)

and with the continuity algorithm (dashed line).

with u=@�=@y and v=−@�=@x. The �gure makes a solid body rotation centred at point
(x0; y0)=(0:5; 0:5) and the constant angular velocity � is such that a full revolution is per-
formed in 628 time steps. The CFL number, based on the maximum co-ordinate velocity in
the computational domain, is about 0.495. As stated by several authors [1, 12], this study is
useful to test the accuracy of the reconstruction method and in particular its ability to repre-
sent �uid interfaces with high curvature. With respect to the advection algorithm, we notice
that in a solid body rotation both @u=@x and @v=@y are zero. The advection methods, de-
scribed in Section 4, di�er among themselves mainly in the way they treat the 1D divergence
correction terms, which are equal to zero in this case. Then, the results are basically the
same. The only di�erence we notice is that the Eulerian explicit–implicit scheme gives rise to
a more noisy solution. This problem can be easily overcome by introducing a small parameter
� (taken equal to 1× 10−15 for this case), so that the volume fraction C is set to zero when
it is less than �, and to one when C¿1−�. Such a correction is not necessary for both the
Lagrangian and the mixed schemes. Mass is always exactly conserved. In Figure 8 we show
the reconstruction after one full solid body rotation: on the left the ELVIRA (solid line)
and the linear �t (dashed line) reconstructions, on the right the quadratic �t (solid line) and
the quadratic �t with continuity (dashed line) reconstructions. The results with the interface
represented by a single segment in each cell are similar to those presented by several authors
[1, 12, 7]. At this resolution, the di�erence between the real line and our four approximations
is visible only near the corners. Usually, a VOF=PLIC reconstruction smoothes regions with
high curvature, even more drastically near a corner where the discontinuity across the cell
boundary is O(h). When advected by translations or solid body rotations, these discontinuities
are progressively smeared out, till the radius of curvature can be correctly reconstructed by
the VOF=PLIC method under consideration. With reference to Figure 8, we notice that the
discontinuities are smeared out in time, but also advected faster by the counterclockwise �ow,
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Figure 9. Zalesak’s test for ten full solid body rotations: on the left with the ELVIRA reconstruction
(solid line) and the linear �t (dashed line), on the right with the quadratic �t alone (solid line) and

with the continuity algorithm (dashed line).

thus creating some phase error near the corners. With the two-line reconstructions, at the end
of the rotation the approximated interface is more symmetric, closer to the real line in the
proximity of the corners and with very little phase error. The fact that smoothing goes on
till the radius of curvature is correctly reproduced by the method, is clearly seen in Figure 9,
where we present the four reconstructions after ten revolutions, with 6280 time steps. The
�rst two methods are not yet capable to describe correctly the high curvature regions which
progressively overshoot the original line. On the contrary, the two-line methods have still lit-
tle phase shift error near the corner, are symmetric and the degradation of the reconstruction
is relatively mild. To compare our results with published work, we consider the Rudman–
Zalesak version of this problem [4]. The computational domain is now a square of side 4, with
200 cells along each co-ordinate direction. The circle is centred at (2.,2.75), with a diameter
of 50 cells. The width of the slot is 6 cells and 20 cells that of the upper bridge. A full
rotation is exactly completed with 2524 steps, corresponding to a Courant number, based on
the maximum co-ordinate velocity in the domain, of about 0.25. As in [4, 12], the errors are
calculated using

E=

∑
i; j |Ci; j − C̃i; j|∑

i; j Ci; j
(17)

where Ci; j is the exact volume fraction at the end, or at the beginning, of the test, C̃i; j is
the calculated value with one of the examined combinations of reconstruction and advection
algorithms. The error is mainly generated in the reconstruction near the corners, so the results
measure more the accuracy of the reconstruction technique in the representation of interfacial
lines with regions of high curvature rather than the advection part of the algorithm. The errors
are shown in Table V. In this table, the Puckett’s reconstruction scheme is similar in spirit to
ELVIRA, but it is based on an interative scheme to �nd a local minimum of expression (4),
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Table V. The error for the Rudman–Zalesak slotted disk rotation test. The
�rst two results are taken from [12].

Reconstruction=Advection algorithms Error

Youngs=Stream (unsplit) 1:07e− 2
Puckett/Stream 1:00e− 2
ELVIRA=Lagrangian (split) 1:00e− 2
Linear �t=Lagrangian 9:42e− 3
Quadratic �t=Lagrangian 5:47e− 3
Quadratic �t+continuity=Lagrangian 4:16e− 3

while the Stream scheme is a multidimensional advection algorithm developed by Harvie and
Fletcher [12]. Boundary �uxes are calculated by subdividing each cell side in a number of
equal stream sections, by integrating back in time for the computational time step along the
�uid streamline passing through each stream section to determine a �ux tube, and �nally by
determining the �uid volumes in each elementary �ux tube that will cross the cell boundary
during the time step. As previously stated, in a rotation the 1D divergence correction term is
zero, so we obtain the same results with the Lagrangian, the Eulerian and the mixed schemes.
The results show that the quadratic �t, with or without the added continuity, is superior to
the ELVIRA and linear �t reconstructions for simple advection tests. We have also performed
several tests with uniform translations and solid body rotations of a regular �gure such as a
circle, and the results are similar to those presented in the text.

5.2. Rider–Kothe reversed single vortex �ow

A more precise assessment of reconstruction and advection algorithms is made with a �ow
containing a non-uniform vorticity �eld. The test is taken from the work of Rider and Kothe
[1], and it has been considered by other authors as well [4, 12]. A circle of radius 0.15
is centred at point (0.5,0.75) in a unit square domain. All boundaries are periodic and the
velocity �eld v is speci�ed by the stream function

�(x; y; t)=
1
�
sin2(�x) sin2(�y) cos

(
�t
T

)
(18)

The circle of �uid is advected by this solenoidal velocity �eld, stretching and spiralling about
the centre of the domain. It reaches a maximum deformation at time t=T=2, while at time
t=T it returns to the initial position because of the temporal component of Equation (18)
[23]. Then, a precise indication of the accuracy of the adopted schemes can be deduced
by comparing the initial and �nal position of the �uid. For consistency with previous work
[1, 4, 12], we consider a period T=2 and a 322 grid, while the error is now calculated as

E=
∑
i; j
h2|Cfi; j − Cii; j| (19)

where h is the constant grid size along each co-ordinate direction and Cfi; j and C
i
i; j are,

respectively, the �nal and initial volume fraction values at cell (i; j). In Figure 10 we show
the results obtained at time t=T on the left with the ELVIRA reconstruction and the La-
grangian and the Eulerian explicit–implicit advection schemes, on the right ELVIRA and the
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Figure 10. The reversed single vortex test for T=2 on a 322 grid, with the ELVIRA reconstruction
and di�erent advection schemes: on the left the Eulerian explicit–implicit scheme (solid segments) and
the Lagrangian method (dashed segments), on the right the ELVIRA=LE–EI (solid segments) and the

quadratic �t with continuity=LE–EI (dashed segments) schemes.

Table VI. Mass conservation and errors for the single vortex test, with the ELVIRA
Reconstruction (T=2; 322 mesh).

Advection algorithm Mass error at t=T=2 (%) Mass error at t=T (%) Error

Lagrangian 3.82 6.4 1:22e− 2
Eulerian exp–imp 7:07e− 1 1:79e− 2 2:82e− 3
LE–EI 7:9e− 1 1:89e− 3 2:50e− 3
EI–LE 3:92e− 14 ¡1:e− 14 2:52e− 3

quadratic �t with added continuity reconstructions together with the LE–EI split advection.
Mass conservation and geometric errors are summarized in Table VI. The Lagrangian algo-
rithm [5] is rather clean, but there is a constant increase in mass, a deformation of the �gure
and a clear phase error (at the end of the simulation the reconstructed interface is behind
the real �gure). The mass production is due to the fact that with a CFL∼ 1, the �uid, say
at cell (i; j) and moving to the right, feels �rst the 1D divergence term (@u=@x) of cell (i; j)
and then (@v=@y) of cell (i+1; j). The sum of these two terms is not zero, so the scheme is
constantly changing mass. It is possible to develop a global mass conservation scheme, but
the phase error still remains and it is due to the fact that there is not an implicit part in the
algorithm. This phase error is clearly also present if one runs the Eulerian explicit scheme
in both directions. With the Eulerian explicit–implicit scheme [1] there is no phase error, the
deformation is still present and the reconstruction is rather noisy. By following step after step
the evolution of the interface one can notice more debris left behind and little holes inside
the bulk of the �gure. The reason is that this scheme has the tendency to produce cells with
C¡0 and C¿1, that in the algorithm presented in Figure 10 are simply set to 0 and 1,
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Table VII. Errors for the single vortex test, with several reconstruction algorithms
and the EI–LE advection scheme (T=2; 322 mesh).

Reconstruction algorithm Error (CFL=1:0) Error (CFL=0:1)

ELVIRA 2:52e− 3 3:11e− 3
linear �t 1:75e− 3 2:22e− 3
quadratic �t 1:88e− 3 2:00e− 3
quadratic �t + continuity 1:09e− 3 1:14e− 3
Puckett/Rider-Kothe (unsplit) 2:36e− 3 —
Puckett/Stream (unsplit) 2:37e− 3 —

The last two results are taken from [1, 12], respectively.

respectively. We have also developed a local redistribution algorithm to take care of this
problem and to remove isolated cells with the result that the �gure now presents fewer debris
and no hole, a better mass conservation and the error of Table VI decreases to 2:77× 10−3.
With the two mixed schemes there is no phase error, the deformation is a bit less that in the
Eulerian scheme and there are no debris or holes during the whole simulation. To remove
truncation errors, we simply set the previously de�ned parameter � to 10−15 (however, there
is no di�erence if we set it to 10−12). The results clearly indicate that the EI–LE scheme
conserves mass within machine error, this is not the case for the LE–EI scheme that, together
with the Eulerian method, bene�ts from the back and forth structure of the �ow, as seen from
the mass conservation errors at t=T=2. However, this will not be the case in a real dynamical
simulation. So we can conclude that a second-order reconstruction scheme together with a
mixed advection algorithm has the feature, within truncation error, to produces no �otsam
and no under=over�ow of the volume fraction function [3, 12, 1], moreover the EI–LE scheme
conserves the mass correctly. We have shown this feature for an operator split advection
algorithm in 2D, at the moment we do not know if we can extend this property to a split
scheme in 3D or even to an unsplit method. In Table VII we present the results for several
reconstruction algorithms with the EI–LE advection scheme, with a CFL number equal to 1
and 0.1, respectively. We notice that at low resolution, the quadratic �t is less performing
than the linear �t, because the interface becomes very fragmented during the simulation. By
running the simulation with a more realistic CFL number of 0.1 the evolution of the inter-
face is smoother and the quadratic �t outperforms the linear one. For the LE–EI propagation,
the mass conservation error decreases with the CFL number (here more than one order of
magnitude). The bigger error at the end of the simulation for the smaller CFL number is
mainly due to the increased number of reconstructions, here a factor 10, and it is related to
the advection of the discontinuity of the reconstructed interface at the boundary of adjacent
cells, as pointed out in the discussion of the Zalesak’s test. Therefore, if we apply the linear
�t procedure two times, the interface becomes a bit smoother and the �nal error decreases by
10%. The quadratic �t with continuity is always the best, showing an error variation of only
a few per cents between the two simulations with di�erent CFL number, again because of the
interface is nearly continuous. Moreover, if we run the ELVIRA scheme with a CFL number
equal to 0.5 or if we subdivide each temporal step in two halves when the CFL=1, we have
a change in the error of about 0.18. By comparing this result with those of Table VII ob-
tained with two di�erent unsplit algorithms [1, 12], we see that most of the di�erence for this
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Table VIII. Errors and convergence rates for the single vortex test.

(a) (b) (c) (d) (e) (f)

Grid Error=order Error=order Error=order Error=order Error=order Error=order

322 2:52e− 3 1:75e− 3 1:88e− 3 1:09e− 3 2:36e− 3 2:37e− 3
1.95 1.91 2.08 1.96 2.01 2.07

642 6:46e− 4 4:66e− 4 4:42e− 4 2:80e− 4 5:85e− 4 5:65e− 4
2.15 2.19 2.24 2.29 2.16 2.10

1282 1:45e− 4 1:02e− 4 9:36e− 5 5:72e− 5 1:31e− 4 1:32e− 4
Note: (a) ELVIRA=EI–LE, (b) linear �t=EI–LE, (c) quadratic �t=EI–LE, (d) quadratic �t and continuity=
EI–LE, (e) Puckett=Rider and Kothe, (f) Puckett=Stream. The last two results are taken from [1, 12], respectively.

test is coming from the number of reconstructions, rather than from the advection algorithm.
Furthermore, we notice that in Figure 10 most of the error is on the top of the circle. In
the evolution of the deforming interface, this region is the one which develops the highest
curvature. By close inspection, the continuity routine sometimes fails to reconstruct correctly
regions of high curvature when there is more than one way to connect segments. The rea-
son is that it is not straightforward to code something that appears to be intuitively obvious
by direct visual inspection. We point out that a VOF reconstruction has no memory of the
previous one, so an alternative way to circumvent the problem rather than by increasing the
complexity of the continuity algorithm, could be the development of a mixed markers and
VOF algorithm. In Table VIII, we examine the convergence properties of the EI–LE scheme
and four reconstruction algorithms and compare them with the results obtained with two un-
split advection algorithms [1, 2]. All results present roughly a second-order convergence rate.
Given a reconstruction scheme, the unsplit schemes have smaller errors than the split EI–LE
method, but they remain within 10%. On the other hand, the reconstruction technique plays a
major role: the more continuous the interface, the better the results. In particular, we notice
that as we increase the mesh from 322 to 642 cells, the quadratic �t performs better than the
linear �t, because the discontinuities in the interface reconstruction become smaller. Finally,
in Figure 11 we show the interface reconstruction at the end of the simulation on a 322 and
on a 1282 mesh. In the second case the di�erence between the real line and our reconstruction
can be hardly seen at this resolution.

6. CONCLUSIONS

We have presented two new methods to reconstruct interfaces in free-surface and two-phase
�ows with cartesian two-dimensional grids. They are based on a least-square technique and
they approximate the interface in each cell with a segment (as in a standard VOF=PLIC
method) or with 2 consecutive segments, respectively. These methods have been tested with
several test shapes and their convergence rate is about two. If the reconstruction is made
continuous or almost continuous at the boundary between two adjacent cells, the error in the
reconstruction further decreases, in particular at low resolution. We have also investigated the
geometric nature of split advection algorithms based on Lagrangian and Eulerian approaches.
We have developed a new mixed split advection scheme, with �rst an Eulerian implicit
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Figure 11. The reversed single vortex test for T=2 with the quadratic �t with continuity reconstruction
and the EI–LE advection scheme on a 322 (dashed segments) and on a 1282 (solid segments) grid.

step followed by a Lagrangian one, which conserves mass exactly with no �otsam and no
undershoots or overshoots of the volume fraction C. Given a reconstruction scheme, this
algorithm is slightly less performing than unsplit algorithms, mainly because the number of
reconstructions is twice as much. However, when coupled to the new reconstruction methods,
the combined algorithm performs consistently better than other combinations of VOF=PLIC
and unsplit algorithms. The results point out that by making the interface continuous at the
boundary between cells, or with very small discontinuities, the performance of the overall
method is greatly improved.
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